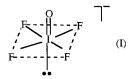
Heptacoordination. Synthesis and Characterization of the IOF₅²⁻ Dianion, an XOF₅E Species

Karl O. Christe,^{*,†,‡} William W. Wilson,[†] David A. Dixon,[§] and Jerry A. Boatz[†]


Contribution from the Air Force Research Laboratory, Edwards Air Force Base, California 93524, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352

Received December 9, 1998

Abstract: The new IOF_5^{2-} dianion was prepared in the form of its cesium salt by heating stoichiometric amounts of CsF, I₂O₅, and IF₅ to 162 °C for 14 days. The white stable solid was characterized by vibrational spectroscopy. A normal coordinate analysis was carried out with the help of ab initio calculations at the HF/ ECP/DZP level of theory and resulted in an excellent agreement between observed and calculated frequencies. The structure of IOF_5^{2-} is that of a pentagonal bipyramid with five equatorial fluorine ligands, and an oxygen atom and one sterically active free valence electron pair occupying the two axial positions. The structure is very similar to that previously established by vibrational spectroscopy and X-ray diffraction for isoelectronic XeOF₅⁻ and represents only the second example of a heptacoordinated XOF₅E (E = free valence electron pair) main group species. The possible existence of the IOF_{6}^{3-} trianion is briefly discussed.

Introduction

The existence of the IOF_4^- anion has been known for many years, 1^{-4} and its pseudo-octahedral structure (I) has been well

established by X-ray diffraction¹ and vibrational spectroscopy.^{3,4} Furthermore, the isoelectronic species XeOF₄ is well-known.⁵⁻⁹ The recent discoveries that $\text{TeOF}_5^{-,10} \text{ IO}_2\text{F}_4^{-,11} \text{ IF}_6^{-,12} \text{ IF}_4^{-,13}$ and even SbF_6^- and BiF_6^{-14} can all add a second F^- ion to form the corresponding dianions and the existence of the isoelectronic XeOF₅⁻ anion¹⁵ prompted us to explore whether the IOF_5^{2-} anion might also be accessible and stable, and then

(7) Seppelt, K.; Rupp, H. H. Z. Anorg. Allg. Chem. 1974, 409, 331.

(8) Begun, G. M.; Fletcher, W. H.; Smith, D. F. J. Chem. Phys. 1963, 42, 2236.

- (10) Christe, K. O.; Dixon, D. A.; Sanders, J. C. P.; Schrobilgen, G. J.; Wilson, W. W. Inorg. Chem. 1993, 32, 4089.
- (11) Christe, K. O.; Dixon, D. A.; Casteel, W. J.; Syvret, R. G.; Schrobilgen, G. J. To be published.

(12) Christe, K. O.; Wilson, W. W.; Dixon, D. A. To be published. (13) Christe, K. O.; Wilson, W. W.; Drake, G. W.; Dixon, D. A.; Boatz,
J. A.; Gnann, R. Z.; J. Am. Chem. Soc. 1998, 120, 4711.

to establish its structure. The structure of isoelectronic XeOF₅⁻ had been controversial and was only recently settled by a combined ab initio vibrational spectroscopy¹⁶ and an X-ray diffraction¹⁷ study.

Experimental Section

Materials and Methods. The I2O5 was obtained by heating a commercially available (from Mallinckrodt) sample of "I₂O₅", which based on its Raman spectrum was actually HI₃O₈,¹⁸ in a dynamic vacuum at 210 °C for 12 h. The CsF (KBI) was fused in a platinum crucible, transferred while hot to the drybox, and finely powdered. The IF5 (Matheson Co.) was treated with $\rm ClF_3$ (Matheson Co.) at 25 $^\circ\rm C$ until the liquid was colorless, followed by fractional condensation in a dynamic vacuum, using the -64 °C fraction.

Volatile materials were handled in a stainless steel vacuum line equipped with Teflon-FEP U-traps, 316 stainless steel bellows seal valves, and a Heise pressure gauge.¹⁹ Solids were handled in the dry nitrogen atmosphere of a glovebox.

Infrared spectra were recorded on a Mattson Galaxy 5030 spectrometer using AgBr disks, which were prepared by pressing the finely powdered samples between two thin AgBr plates in a Barnes Engineering minipress inside the glovebox. Raman spectra were recorded at room temperature on a Cary Model 83 GT spectrometer using the 488 nm exciting line of an Ar ion laser.

(19) Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Synth. 1986, 24,

Air Force Research Laboratory.

[‡] University of Southern California.

[§] Pacific Northwest National Laboratory.

⁽¹⁾ Ryan, R. R.; Asprey, L. B. Acta Crystallogr., Sect. B 1972, 28, 979.

⁽²⁾ Milne, J. B.; Moffett, D. M. Inorg. Chem. 1976, 15, 2165.

⁽³⁾ Christe, K. O.; Wilson, R. D.; Curtis, E. C.; Kuhlmann, W.; Sawodny,

W. Inorg. Chem. 1978, 17, 533. (4) Christe, K. O.; Wilson, W. W.; Wilson, R. D. Inorg. Chem. 1989,

^{28, 904.} (5) Chernick, C. L.; Claassen, H. H.; Malm, J. G.; Plurien, P. L. In Noble-

Gas Compounds; Hyman, H. H., Ed.; University of Chicago Press: Chicago, IL, and London, 1963; p 287.

⁽⁶⁾ Smith, D. F. Science (Washington, D. C.) 1963, 140, 899.

⁽⁹⁾ Christe, K. O.; Wilson, W. W. Inorg. Chem. 1988, 27, 1296.

⁽¹⁴⁾ Drake, G. W.; Dixon, D. A.; Sheehy, J. A.; Boatz, J. A.; Christe, K. O. J. Am. Chem. Soc. 1998, 120, 8392.

^{(15) (}a) Moody, G. J.; Selig, H. Inorg. Nucl. Chem. Lett. 1966, 2, 319. (b) Selig, H. Inorg. Chem. 1966, 5, 183. (c) Waldman, M. C.; Selig, H. J. Inorg, Nucl. Chem. 1973, 35, 2173. (d) Schrobilgen, G. J.; Martin-Rovet, D.; Charpin, P.; Lance, M. J. Chem. Soc., Chem. Commun. 1980, 894. (e) Holloway, J. H.; Kaucic, V.; Martin-Rovet, D.; Russell, D. R.; Schrobilgen, G. J.; Selig, H. Inorg. Chem. 1985, 24, 678.

⁽¹⁶⁾ Christe, K. O.; Dixon, D. A.; Sanders, J. C. P.; Schrobilgen, G. J.; Tsai, S. S.; Wilson, W. W. Inorg. Chem. 1995, 34, 1868 and references therein.

⁽¹⁷⁾ Ellern, A.; Seppelt, K. Angew. Chem., Int. Ed. Engl. 1995, 34, 1586. (18) Sherwood, P. M. A.; Turner, J. J. Spectrochim. Acta., Part A 1970, 26A. 1975.

Preparation of Cs₂IOF₅. On the stainless steel vacuum line, IF₅ (9.255 mmol) was condensed at -196 °C into a prepassivated (with ClF₃) 95 mL Monel cylinder that was closed by a Monel valve. The cylinder was taken to the drybox, cooled to -196 °C, and opened, and preweighed stoichiometric amounts of finely powdered dry CsF (30.92 mmol) and I₂O₅ (3.086 mmol) were added. The cylinder was closed, evacuated at -196 °C, and then heated in an electric oven to 162 °C for 65 h. Inspection of the white loose product by Raman spectroscopy showed only partial conversion to IOF_5^{2-} with large amounts of I_2O_5 ,¹⁸ CsIOF₄,^{3,4} and Cs₂IF₇¹² being present. The product was finely powdered, returned to the cylinder, and heated to 162 °C for an additional 95 h. Examination of the solid product indicated a conversion to Cs2IOF5 of about 90% and a substantial decrease in the amounts of I2O5, CsIOF4 and Cs2IF7. The product was powdered again and heated to 162 °C for an additional 188 h. At this point, the resulting white loose powder showed essentially complete conversion to Cs₂IOF₅, with a trace of CsIOF₄ being the only impurity detectable by Raman spectroscopy.

Computational Methods. Quantum chemical calculations employing the Hartree–Fock (HF) self-consistent-field method and the program Gaussian 94²⁰ were performed for the free, C_{5v} symmetry IOF₅^{2–} dianion. A double- ζ plus polarization (DZP) basis set for the oxygen and fluorine atoms²¹ and a DZP basis set for the valence shell and an effective core potential (ECP)²² for the inner shells of iodine were used. This level of calculation has been shown to provide excellent structures and frequencies for hypervalent main group compounds.^{10–14} The geometry and vibrational frequencies were calculated using numerical derivative methods.²³ The calculated Hessian matrices (second derivatives of the energy with respect to Cartesian coordinates) were converted to symmetry-adapted internal coordinates for further analysis using the program Bmtrx.²⁴

Results and Discussion

Synthesis and Properties of Cs₂IOF₅. The synthesis of Cs₂-IOF₅ was achieved by heating stoichiometric mixtures of I₂O₅, CsF, and IF₅ to 162 °C for extended time periods (eq 1). The

$$10CsF + I_2O_5 + 3IF_5 \xrightarrow{162 \circ C} 5Cs_2IOF_5$$
 (1)

initial reaction products were mainly $CsIOF_4^{3,4}$ and Cs_2IF_7 ,¹² in addition to some Cs_2IOF_5 . It was found important to stop the reaction periodically and intimately grind the sample. Two regrinds and a total heating time of 14 days were found sufficient to achieve essentially complete conversion to Cs_2IOF_5 , with a trace of $CsIOF_4$ being the only impurity detectable by Raman spectroscopy. When only half the amount of CsF was used in this reaction, the principal product was $CsIOF_4$. Our approach of using stoichiometric amounts of I_2O_5 and IF_5 in place of IOF_3 as a starting material is not new. It has been used in the past for the synthesis of IOF_3 itself²⁵ and of IOF_4^- salts.³ In view of this and the known ease with which IOF_3 can dismutate above 110 °C to IO_2F and IF_5 ,²⁵ no attempts were made to isolate

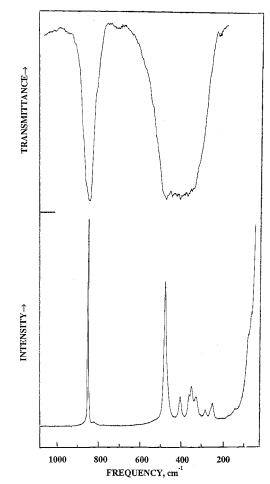
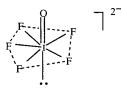



Figure 1. Infrared and Raman spectra of solid Cs₂IOF₅.

first pure IOF_3 and then react it further with CsF to prepare $CsIOF_4$ and Cs_2IOF_5 .

The Cs₂IOF₅ salt is a white stable solid that was characterized by its vibrational spectra (see below). The growing of single crystals for X-ray diffraction or NMR studies was preempted by its poor solubility and ready loss of F^- ions in the usual solvents. Multi-fluorine-substituted mononuclear dianions normally lose F^- to any solvent, and Cs₂IOF₅ typifies that behavior.

Vibrational Spectra and Computational Results. The Raman and infrared spectra of solid Cs₂IOF₅ are shown in Figure 1, and the observed frequencies and their assignments in point group C_{5v} are summarized in Table 1. As can be seen, the observed spectra are in excellent agreement with the scaled HF/ ECP/DZP frequencies and those of the closely related IF_5^{2-13} and isoelectronic XeOF5-16 anions. The excellent correspondence between the vibrational spectra of XeOF₅⁻ and IOF₅²⁻ leaves no doubt that IOF52- also possesses the pseudopentagonal bipyramidal C_{5v} structure found for XeOF₅⁻ in NO⁺XeOF₅⁻ by X-ray diffraction.¹⁷ This C_{5v} structure for IOF₅²⁻ was also confirmed by the results of our ab initio calculations, which showed it to be the minimum energy structure with the oxygen atom and a sterically active free valence electron pair of iodine occupying the two axial positions of a pentagonal bipyramid.

⁽²⁰⁾ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanajakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. *Gaussian 94*; Gaussian, Inc.: Pittsburgh, PA, 1995.

⁽²¹⁾ Dunning, T. H., Jr.; Hay, P. J. In *Methods of Electronic Structure Theory*; Schaefer, H. F., III, Ed.; Plenum Press: New York, 1977; Chapter 1.

⁽²²⁾ Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.

⁽²³⁾ Hehre, W. J.; Radom, L.; Schleyer, P.v.R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; John Wiley and Sons: New York, 1986.

⁽²⁴⁾ Komornicki, A. *Bmtrx*, Version 2.0; Polyatomics Research Institute: Redwood City, CA, 1996.

⁽²⁵⁾ Aynsley, E. E.; Nichols, R.; Robinson, P. L. J. Chem. Soc. 1953, 623.

Table 1. Vibrational Spectra of Cs_2IOF_5 and Their Assignments in Point Group $C_{4\nu}$ Compared to Those Observed for XeOF₅⁻ and IF₅²⁻

		obsd freq, cn	n ⁻¹ (intensity)	calcd freq, cm ⁻¹ (IR intens) ^a		XeOF ₅ ^{- c}
assignt (activity)	approx mode description	Ra	IR	HF/ECP/DZP	IF_5^{2-b}	
$A_1(IR, Ra)$	$\nu_1 \nu I=0$	854 (100)	855 s	847 (71)	_	880
	$\nu_2 \nu$ sym IF ₅	485 (58)	485 w	488 (0)	474	515
	$\nu_3 \delta$ umbrella IF ₅	289 (4)	290 sh	298 (86)	$[307]^d$	296
$E_1(IR, Ra)$	ν_4 antisym comb of ν as IF ₅ and δ wag I=O	_	415 vs,br	414 (1032)	335	495
	ν_5 sym comb of ν as IF ₅ and δ wag I=O	334 (5)	330 sh	343 (230)	_	370
	$\nu_6 \delta$ as in-plane IF ₅	254 (7)		255 (0)	245	273
$E_2(-, Ra)$	$\nu_7 \delta$ sciss in-plane IF ₅	409 (11)		385 (0)	396	460
,	IF	[367 (2)]		363 (0)	[339	
	$\nu_8 \nu$ as IF ₅	355 (15)			325	397
	$\nu_9 \delta$ pucker IF ₅			115 (0)	$[100]^d$	$[115]^d$

^{*a*} Empirical scaling factors of 0.9724 and 0.9244 were used for the stretching and the deformation modes, respectively. ^{*b*} Data from ref 13. ^{*c*} Data from ref 16. ^{*d*} Calculated value.

Table 2. Calculated HF/ECP/DZP Geometry for C_{5v} IOF₅²⁻

	unscaled	$scaled^a$		unscaled	scaled ^a
<i>r</i> (I=O), Å	1.722		$\angle O = I - F$, deg	91.48	91.7
<i>r</i> (I−F), Å	2.041		$\angle F - I - F$, deg	71.97	72.4

^{*a*} Predicted values based on scale factors from XeOF₄ in ref 16 and a comparison between predicted HF/ECP/DZP values for isoelectronic $XeOF_5^-$ in ref 13 and the experimental data from ref 17.

Table 3. Symmetry Force Constants^{*a*} and Potential Energy Distribution^{*b*} of $C_{5\nu}$ IOF₅²⁻ Calculated from the Scaled HF/ECP/ DZP Second Derivatives

	freq, cm ⁻¹			sym force consts			
	obsd	calcd		F_{11}	F_{22}	F ₃₃	PED
$\overline{A_1}$	854	847	F_{11}	6.006			98.0(1) + 1.6(3) + 0.4(2)
	485	488	F_{22}	0.320	2.655		98.1(2) + 1.0(3) + 0.8(2)
	289	298	F_{33}	0.265	-0.466	2.751	91.7(3) + 8.3(2)
	freq, cm ⁻¹			sym force consts			
	obsd	calcd		F_{44}	F_{55}	F_{66}	PED
$\overline{E_1}$	415	414	F_{44}	1.237			47.7(4) + 43.8(5) + 8.5(6)
	334	343	F_{55}	-0.181	2.013		54.4(4) + 45.2(5) + 0.4(6)
	254	255	F_{66}	0.089	-0.262	1.008	63.3(6) + 34.7(5) + 2.0(4)
	freq, cm ⁻¹			sym force consts			
	obsd	calcd		F_{77}	F_{88}	F ₉₉	PED
$\overline{E_2}$	409	385	F_{77}	1.375			78.9(7) + 21.1(8)
	367	363	F_{88}	0.143	2.027		82.6(8) + 17.0(7) + 0.3(9)
	355						
	-	115	F_{99}	-0.302	0.031	0.685	94.0(9) + 5.9(8) + 0.1(7)

^{*a*} Stretching constants in mdyn/Å, deformation constants in mdyn Å/rad², and stretch-bend interaction constants in mdyn/rad. ^{*b*} PED in percent; symmetry coordinates: $S_1 = \nu$ I=O; $S_2 = \nu$ sym IF₅; $S_3 = \delta$ umbrella IF₅; $S_4 = \nu$ as IF₅; $S_5 = \delta$ wag I=O; $S_6 = \delta$ as in-plane IF₅; $S_7 = \delta$ sciss in-plane IF₅; $S_8 = \nu$ as IF₅; $S_9 = \delta$ pucker IF₅.

The geometry, predicted for IOF_5^{2-} on the basis of the ab initio calculations, is given in Table 2.

Since our evidence for the structure of IOF_5^{2-} rests mainly on the vibrational spectra, a normal coordinate analysis was carried out for this anion. Its symmetry force constants and potential energy distribution (PED) are listed in Table 3, and its internal stretching force constants are compared in Table 4 to those of the closely related $IOF_4^{-,3}$ $IF_5^{2-,13}$ and IF_4^{-26} anions and their isoelectronic xenon counterparts.^{13,16,26-28}

The PED of Table 3 shows that the vibrations in the A_1 block are highly characteristic but that the similarities of the frequencies of the antisymmetric IF₅ stretching modes with those of the closest deformation modes result in strong mixing in the E blocks. This similarity is caused by the high ionicity and

Table 4. Internal Force Constants (mdyn/Å) of IOF_5^{2-} , IOF_4^- , IF_5^{2-} , and IF_4^- Compared to Those of the Isoelectronic Xenon Species

~	f X=0	$f_{\rm r}$ (XF)	$f_{\rm rr}$ (XF)	$f_{\rm rr}'(\rm XF)$
IOF5 ^{2- a}	6.01	1.84	0.027	0.380
IOF_4^{-b}	6.56	2.46	0.16	0.45
IF_5^{2-c}	_	1.53	0.035	0.423
IF_4^{-d}	_	2.22	0.183	0.466
XeOF5 ^{-e}	6.33	2.25	0.15	0.20
XeOF ₄ ^f	7.08	3.26	0.12	0.10
XeF5 ^{-g}	—	2.10	0.14	0.26
XeF_4^d	—	3.06	0.12	0.01

^{*a*} Values from this study. ^{*b*} Values from ref 3. ^{*c*} Values from ref 13. ^{*d*} Values from ref 26. ^{*e*} Values from ref 16. ^{*f*} Values from ref 27. ^{*g*} Values from ref 28.

weakness of the equatorial IF₅ bonds which cause, for example, the antisymmetric IF₅ stretching frequency, ν_8 (E₂), to have a lower frequency than the in-plane IF₅ scissoring mode, ν_7 (E₂).

Inspection of Table 4 shows the expected trends. The stretching force constants of the IF₅ part of IOF_5^{2-} are very similar to those of IF₅²⁻, except for the increase in f_r on going from IF₅²⁻ to IOF_5^{2-} , caused by the change in the iodine oxidation state from +III to +V and the concomitant increase in the covalency of the I–F bonds. On going from IOF_4^- to IOF_5^{2-} , both the I–O and I–F stretching force constants decrease, as expected for an increased polarity of these bonds due to the additional negative charge in the dianion. The same trends hold for the isoelectronic xenon species of Table 4.

The I–F stretching force constants in IOF_5^{2-} and IF_5^{2-} exhibit very low values of 1.84 and 1.53 mdyn/Å, when compared to the values of 5.60 and 4.68 mdyn/Å for the highly covalent I–F bonds in IF_6^+ and F_{ax} – IF_4 , respectively.²⁹ These low f_r values for IOF_5^{2-} lend strong support to the highly ionic, 6-center 10-electron bond model for the five equatorial fluorine ligands, which was previously proposed and discussed in detail for XeF₅⁻²⁸ and IF₇.³⁰ The value of 6.01 mdyn/Å for the I–O bond in IOF_5^{2-} , although on the low side of the usual range for mainly covalent I=O double bonds, confirms that the negative charges in IOF_5^{2-} are concentrated on the fluorine ligands.³¹

Possible Existence of Cs₃IOF₆. The use of a CsF:I₂O₅:IF₅ stoichiometry of 15:1:3, which corresponds to a final product

⁽²⁷⁾ Begun, G. M.; Fletcher, W. H.; Smith, D. F. J. Chem. Phys. 1965, 42, 2236. Tsao, P.; Cobb, C. C.; Claassen, H. H. J. Chem. Phys. 1971, 12, 5247 and references therein.

⁽²⁸⁾ Christe, K. O.; Curtis, E. C.; Dixon, D. A.; Mercier, H. P.; Sanders, J. C. P.; Schrobilgen, G. J. J. Am. Chem. Soc. **1991**, *113*, 3351.

⁽²⁹⁾ Christe, K. O.; Sawodny, W. Inorg. Chem. 1967, 6, 1783.

⁽³⁰⁾ Christe, K. O.; Curtis, E. C.; Dixon, D. A. J. Am. Chem. Soc. 1993, 115, 1520.

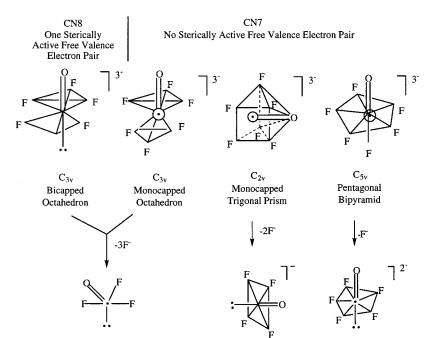


Figure 2. Most likely geometries of the $IOF_{6^{3-}}$ trianion and their spontaneous decomposition modes.

having a composition of Cs_3IOF_6 , resulted in a white solid, the Raman spectrum of which was distinct from that of Cs_2IOF_5 . After 83 days of heating to 162 °C and periodic grinding of the sample, a new composition was obtained that gave the following Raman spectrum (cm⁻¹, relative intensity): 865 (100), 468 (100), 372 (2), 327 (24), 265 (1), 246 (7), 177 (7). The IOF₄⁻ and IOF₅²⁻ anions, observable in the early stages of its synthesis had vanished, and the only impurities detectable by Raman spectroscopy were traces of I₂O₅ and IF₇²⁻.

Based on the observation of a single band in the I=O stretching mode range, the presence of a dioxo species can be precluded. To judge if this composition could represent the novel IOF_6^{3-} anion, ab initio calculations, similar to those previously used for evaluating the feasibility of IF_6^{3-} ,¹³ were carried out. The most likely structures for IOF_6^{3-} , possessing either a sterically active or a sterically inactive free valence electron pair on iodine, are shown in Figure 2 and were tested for their tendencies to spontaneously lose fluoride ions. In all four calculations, spontaneous fluoride ion loss and no energy minima for the different $IOF_6{}^{3-}$ structures were found. The $C_{5v} IOF_6{}^{3-}$ structure lost one F⁻, the $C_{2\nu}$ structure lost two F⁻, and the $C_{3\nu}$ structures lost three F⁻ to give the stable IOF₅²⁻ and IOF₄⁻ ions and the IOF₃ molecule, respectively. In view of these calculations, no reliable interpretation can be offered at this time for the Raman spectrum of the "Cs₃IOF₆" composition. The fact that the I=O stretching vibration of "Cs₃IOF₆" is actually 11

cm⁻¹ higher than that in IOF_5^{2-} might be interpreted as evidence against the presence of discrete IOF_6^{3-} ions.

Conclusions

This study conclusively demonstrates the existence of the IOF_5^{2-} dianion as its stable cesium salt. This dianion is only the second known example of a pseudo-pentagonal bipyramidal main group species possessing, in addition to the five equatorial fluorine ligands, one doubly bonded oxygen ligand and one sterically active free valence electron pair in the axial positions. The results from a normal coordinate analysis of the vibrational spectra show that the five equatorial ligands are relatively weakly bound through highly ionic 6-center 10-electron bonds, similar to those found for the pentagonal planar XeF₅^{- 28} and IF₅²⁻¹³ anions. The possible existence of the IOF₆³⁻ trianion was also studied, and the presence of a new composition was indicated by the Raman spectra but ab initio calculations and a slight shift of the I=O stretching mode to higher frequency augur against the presence of IOF₆³⁻.

Acknowledgment. This paper is dedicated to Professor Wolfgang Sawodny on the occasion of his retirement. The authors thank Dr. S. Rodgers and Prof. G. Olah for their active support. The work at the Air Force Research Laboratory was supported by the Propulsion Directorate and Office of Scientific Research of the U.S. Air Force, while that at USC was sponsored by the National Science Foundation and that at PNNL by the U.S. Department of Energy under Contract No. DE-AC06-76RLO 1830.

JA984248O

⁽³¹⁾ The Mulliken charges for IOF_5^{2-} are 2.35 e for I, -0.86 e for O, and -0.70 e for F. Thus, most of the negative charge is found in the ring of the five equatorial fluorines. Even though the oxygen has a slightly larger negative Mulliken charge than fluorine, it is partially compensated by the high positive charge on I.